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Optical Nonlinearities in Fibers: Review, Recent
Examples, and Systems Applications

J. Toulouse

Abstract—Optical nonlinearities give rise to many ubiquitous
effects in optical fibers. These effects are interesting in themselves
and can be detrimental in optical communications, but they also
have many useful applications, especially for the implementation
of all-optical functionalities in optical networks. In the present
paper, we briefly review the different kinds of optical nonlinear-
ities encountered in fibers, pointing out the essential material and
fiber parameters that determine them. We describe the effects pro-
duced by each kind of nonlinearity, emphasizing their variations
for different values of essential parameters. Throughout the paper,
we refer to recent systems applications in which these effects have
been dealt with or exploited.

Index Terms—Optical communications, optical fibers, optical
nonlinearities.

I. INTRODUCTION

ONE OF the unique characteristics of optical fibers is their
relatively low threshold for nonlinear effects. This can be

a serious disadvantage in optical communications, especially
in wavelength-division multiplexing (WDM) systems, where
many closely spaced channels propagate simultaneously, re-
sulting in high optical intensities in the fiber. For instance,
in a typical commercial 128-channel 10-Gb system, optical
nonlinearities limit the power per channel to approximately
−5 dBm for a total launched power of 16 dBm. Beyond this
power level, optical nonlinearities can significantly degrade the
information capacity of the system [1]–[3].

On the other hand, optical nonlinearities can be very useful
for a number of applications, starting with distributed in-fiber
amplification and extending to many other functions, such as
wavelength conversion, multiplexing and demultiplexing, pulse
regeneration, optical monitoring, and switching [4]. In fact, the
development of the next generation of optical communication
networks is likely to rely strongly on fiber nonlinearities in
order to implement all-optical functionalities. The realization of
these new networks will therefore require that one look at the
tradeoff between the advantages and disadvantages of nonlinear
effects in order to utilize their potential to the fullest [5].

Interest in nonlinear fiber optics developed with the rapid
growth of optical-fiber communications in the early 1980s and
has been strong for the past 25 years. Over that period, almost
4000 journal articles and 2500 conference papers have been
published on the subject, several subfields have also developed
and each of them has become very specialized. Therefore, it
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seems fitting to reexamine recent advances in the field in a
broader and more fundamental context. Such a comprehensive
approach has been taken in the excellent book by Agrawal
[6], [7], initially published in 1989 and re-edited for the third
time in 2001. The latter third edition contains additional ma-
terial on fiber nonlinearities with short pulses, solitons and
solitonic effects, and polarization aspects of fiber nonlinearities.
The present journal review offers a more concise, but neverthe-
less comprehensive survey of the field of nonlinear fiber optics.
It starts with a condensed review of basic optical nonlineari-
ties in fibers, partially written in a tutorial style and with an
emphasis on fundamentals. It also provides practical examples
and numerous references. Accompanying the fundamentals, we
have included references to the earliest observations of the var-
ious types of fiber nonlinearities. However, because of the ex-
tensive list of references already given in the book by Agrawal,
the bulk of the references provided in the present review are
from very recent studies. Besides a discussion of the nonlinear
effects themselves, this review also covers new glasses and
fiber geometries, with a special section on highly nonlinear
fibers (HNLFs) and, in particular, microstructured fibers. We
make a special effort to point out the impact of different fiber
parameters related to both the material or glass composition and
fiber geometry and the interplay between the two. Finally, we
discuss the combined or joint effects of different nonlinearities
acting simultaneously or concurrently [e.g., supercontinuum
generation (SCG)]. This review should therefore be useful, not
only to the general community of scientists and engineers who
are interested in a brief but comprehensive overview of the
field, but also to the practitioners or users of one or more of
these nonlinearities, as a convenient resource providing basic
formulas and characteristics as well as an extensive list of
references. It can also serve as a primer to more specialized
or fundamental treatments of the subject matter.

Why are optical nonlinearities so prominent in optical fibers?
It would in fact seem that, because of the small nonlinear in-

dex of silica (n2 = 2.6 × 10−16 cm2/W), these nonlinearities
should be negligible. However, two characteristics of the fiber
can strongly enhance optical nonlinearities: the core size and
the length of the fiber. It is easy to show that the nonlinearities
in bulk and silica fibers, respectively, are in the ratio [8]

IfLeff(fiber)
IbLeff(bulk)

=
λ

πr2
0α

(1)

where If,b is the intensity (power per unit area) in the fiber and
bulk, respectively, Leff is the effective length, which for a long

0733-8724/$20.00 © 2005 IEEE



3626 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 11, NOVEMBER 2005

fiber is approximately equal to the inverse of the loss (1/α), λ
is the wavelength, and r0, the radius of the fiber core. As seen
from (1), a small core radius and low loss can greatly enhance
the efficiency of optical nonlinearities. As an example, if we
choose the wavelength to be 1.5 µm, a fiber with a typical loss
of 0.2 dB/km (α = 5 × 10−5m−1), and a core radius of 8 µm,
the nonlinear enhancement simply due to the small core can be
of the order of 108.

When discussing nonlinearities, three fiber parameters are
particularly important. The first two are the effective core area
Aeff and the effective length Leff

Aeff =

{
+∞∫
−∞

|A(x, y)|2 dxdy

}2

+∞∫
−∞

|A(x, y)|4 dxdy

and

Leff =
1
α

(1 − e−αL). (2)

Aeff is the area the core would have if the optical intensity
was uniformly distributed over it and zero outside (step func-
tion). Assuming the fundamental optical beam launched is
Gaussian, it is given by Aeff ∼ πw2, in which the beam waist
w can be calculated exactly. For conventional single-mode
fibers, Aeff ∼ 80 µm2, for dispersion-shifted fibers (DSFs), it is
∼ 50 µm2, and for dispersion-compensated fibers, ∼ 20 µm2.
Leff is the length over which a signal would propagate through
the fiber if it had a constant amplitude over that length and
zero amplitude beyond (Leff =

∫ L

0 e−αldl). For a single-mode
fiber with α = 0.2 dB/km, Leff = 21 km. The third parameter
of great importance to optical nonlinearities in fibers is the
group velocity dispersion (GVD) β2 ≡ −(λ2/2πc2)(dng/dλ),
in which ng ≡ n − λ(dn/dλ) is the group refractive index and
n, the normal index of refraction. The β2 > 0 case corresponds
to normal dispersion and β2 < 0 to anomalous dispersion. In
the normal dispersion regime, longer wavelengths travel faster,
while in the anomalous dispersion regime, it is the shorter wave-
lengths that travel faster. In pure silica, β2 = 0 at ∼ 1310 nm,
which is called the zero-dispersion wavelength (ZDW) λZDW.
In order to operate at the point of minimum loss in silica,
as well as to satisfy phase-matching conditions for nonlinear
effects, fibers are often fabricated with λZDW near 1550 nm.
This wavelength is also close to the maximum gain of erbium-
doped fiber amplifiers (EDFA) at 1530 nm.

II. OPTICAL NONLINEARITIES

A. General

The optical nonlinearities considered in this review are those
that can give rise to gain or amplification, the conversion
between wavelengths, the generation of new wavelengths or
frequencies, the control of the temporal and spectral shape of
pulses, and switching. They result from the interaction between
several optical fields simultaneously present in the fiber and
may also involve acoustic waves or molecular vibrations. One
can distinguish two different types of nonlinearities [6], [7]:

I) the nonlinearities that arise from scattering [stimulated
Brillouin scattering (SBS) and stimulated Raman scatter-
ing (SRS)];

II) the nonlinearities that arise from optically induced
changes in the refractive index, and result either in phase
modulation [self-phase modulation (SPM) and cross-
phase modulation (XPM)] or in the mixing of several
waves and the generation of new frequencies [modulation
instability (MI) and parametric processes, such as four-
wave mixing (FWM)].

For both types of nonlinearities, the optical response of the
material (static or dynamic) is modified by a large optical field.
This material response can be represented by an expansion of
the polarization [9]:

P = χ(1)E + χ(2)EE + χ(3)EEE (3)

where χ(n) is the nth-order susceptibility at optical frequencies.
In glasses, because of the optical isotropy, the second-order
susceptibility is zero, unless the glass has been poled. The
various types of nonlinearities considered here can be expressed
in terms of the real and imaginary parts of one of the nonlinear
susceptibilities χ(n) appearing in (3). The real part of the
susceptibility is associated with the index of refraction and the
imaginary part with a time or phase delay in the response of
the material, giving rise to either loss or gain. For instance, the
nuclear contribution to SRS or the electrostrictive stimulated
Brillouin effect (both resulting in loss or gain) can be expressed
in terms of the imaginary part of a χ(3) susceptibility [10],
[11], while FWM (a purely electronic and almost instantaneous
effect resulting in frequency conversion) contributes to the real
part of the χ(3) susceptibility [12].

Since the present review is concerned with fibers, the non-
linearities discussed are essentially distributed, i.e., they are
cumulative and further develop with distance along a length
of the fiber. To ascertain the importance of a particular type
of nonlinearity, it is therefore useful to estimate this length.
Different lengths can be introduced that characterize the differ-
ent contributions to the development of these nonlinearities. As
we shall see, GVD directly affects the propagation of pulses
and, therefore, the nonlinearities they can experience. For a
pulse of initial input width τ0, a dispersion length can be
defined as LD ≡ τ2

0 /|β2|. If the pulse is initially Gaussian, its
width τ(z) can be shown to increase with z as τ(z) = τ0[1 +
(z/LD)2]1/2 [13]. The second length is the nonlinear length,
LNL. Nonlinearities are usually triggered by changes initiated
in the propagating medium by a pump copropagating with a
signal. However, as the pump propagates, it also progressively
loses power and becomes depleted, no longer acting as a pump.
It is therefore useful to define a nonlinear length over which the
pump is effective in providing energy or gain, LNL = (GP )−1,
in which G is the gain, and P is the pump power. When con-
sidering phase-matched nonlinearities, one also needs to define
the length over which several copropagating lightwaves lose
their mutual phase coherence, Lc = 2π/|κ|, in which κ is the
phase mismatch. Finally, when considering polarization effects,
it is necessary to define the polarization beat length, LB =
2π/|nx − ny|, in which nx,y are the indices of refraction along
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x and y, respectively. This is the length over which a phase
difference of 2π develops between the x and y field components
of the light. In the following, the dominant contributions to the
development of nonlinear effects come from those for which the
corresponding characteristic length is the shortest. For instance,
LD � LNL indicates that the optical nonlinearities considered
are developing over a much longer length than the length over
which a pulse broadens because of its GVD. Hence, dispersion
must be taken into account when describing these nonlinearities
(dispersion-dominated regime). Similarly, LB � LNL would
indicate that polarization effects will strongly influence the de-
velopment of nonlinearities (polarization-dispersion-dominated
regime). It should, however, be obvious that the different con-
tributions described here are only important when the corre-
sponding lengths are comparable or shorter than the effective
length Leff of the fiber. If these lengths are much longer, then
the corresponding effects can be ignored.

B. Scattering Nonlinearities

Type I) nonlinearities involve the lattice or vibrational dy-
namics (nuclear contribution) of the glass and must, therefore,
satisfy the laws of conservation of both energy and momentum
of the light and lattice taken together

Ω = ωL − ωS and 	q = 	kL − 	kS (4)

where L and S stand for laser and Stokes, respectively, ω and
k are the frequency and wavevector of the light, and Ω and
q, those of a lattice phonon. In SBS, the scattered or Stokes
light is downshifted by the frequency of an acoustic phonon
(∼ 10 GHz), and in SRS, by the frequency of an optic phonon
or molecular vibration. In silica, the SRS gain is maximum
at Ω = 13.2 THz from the laser line [14], which corresponds
to the dominant Raman band, called the “broadband.” From
the combination of the two conservation laws, and considering
the fact that acoustic frequencies are much lower than optical
frequencies, one can easily show that SBS occurs at relatively
low powers and is maximum in the backward direction and
zero in the forward direction. This explains why SBS can be so
detrimental in optical communications and is usually avoided
by keeping the power per channel below the threshold. In
cases where the powers needed are higher than the threshold,
dithering or phase modulation of the laser can be used. Such
a phase modulation at frequencies of a few hundred megahertz
broadens the laser linewidth, effectively suppressing the SBS
[see (6) below]. On the positive side, SBS can be exploited
in ultranarrow linewidth lasers and for remote sensing, as
discussed below. The case of SRS is different, because the
light and the optic phonon are much closer in frequencies. In
that case, the scattering cross section exhibits a much smaller
angular dependence, especially for an isotropic medium such
as glass, and Raman scattering can be observed in the forward
and backward directions, albeit slightly more efficiently in the
forward direction [15].

When discussing scattering nonlinearities, particularly in the
context of optical communications, it is important to emphasize
that this scattering is stimulated and not simply spontaneous.

While, in the spontaneous regime, the light scattering origi-
nates from thermally populated phonons or vibrations that are
characteristic of the medium and not influenced by the light,
in the stimulated case, the light itself creates these phonons and
subsequently scatters from them. The single most important dif-
ference between the spontaneous and stimulated regimes is that,
in the former, the thermally populated phonons are incoherent,
while in the latter, the light coherently creates phonons, thereby
rendering the stimulated processes much more efficient. The
threshold for stimulated processes is that input power for which
phonons are created at a higher rate than the rate at which they
are annihilated. It can be expressed as [16]

Pth =
CAeff

gLeff
(5)

where Aeff , Leff , g, and C are, respectively, the effective
modal area, the effective length defined earlier, the gain coef-
ficient, and a constant that depends on the particular process.
For SBS in single-polarization fibers, C ≈ 21 and gB ∼ 5 ×
10−11 m/W, and for SRS, C ≈ 16 in the forward direction
(C ≈ 20 in the backward direction) and gR ∼ 1 × 10−13 m/W
[16]. Using the same parameters as earlier (α = 0.2 dB/km,
Leff = 21 km, and Aeff = 80 µm2), the thresholds for SBS
and SRS are found to be approximately 2 dBm (1.6 mW) and
28 dBm (700 mW), respectively. In practice, variations in
core size along the fiber and other inhomogeneities tend to
raise the SBS threshold to higher powers, between 5 and
10 dBm (3–10 mW) for SBS and between 28 and 32 dBm
(0.7–1.17 W) for SRS. However, these powers are commonly
reached in fibers so that SBS and SRS nonlinearities are often
encountered in optical communications and can be exploited
for practical purposes.

SBS and SRS can be generated from noise by a pump or
seeded by a signal in the presence of a pump. In the first case,
the particular Stokes wave that is shifted from the incident beam
by exactly the frequency of an acoustic or optic phonon is
preferentially amplified. In the second case, the pump transfers
energy to the signal, which seeds the Stokes wave and is thereby
amplified. In this case, the threshold will also depend on the
relative polarizations of the pump and signal and may be a
factor of one to two greater than as given in (5).

As was mentioned in the previous section, for two waves
to interact through a nonlinear process, both must propagate
at the same velocity, which also means that their phases must
be matched. In addition, when pulses are involved, their GVD
must be close to each other. For SBS in fibers, phase matching
between the pump and a particular Stokes wave occurs because
of the availability of a broad spectrum of acoustic phonons,
with ω ∝ q, only one of which satisfies the conservation laws
[see (4)] in the backscattering geometry. For SRS, phase match-
ing occurs “automatically” over a broad range of frequencies
because of the very broad spectrum of molecular vibrations in
silica glass [17]. For the reasons just mentioned, these scattering
nonlinear processes are often said to be self-phase-matched.
This is not the case for the parametric processes discussed later
in this paper. Next, we examine successively the specific aspects
and manifestations of SBS and SRS.
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1) Stimulated Brillouin Scattering (SBS): In SBS, the
Stokes wave is backscattered while the photogenerated acoustic
wave propagates collinearly with the incident pump beam [18].
At the onset of SBS, the reflected light increases rapidly with
incident optical power and the transmitted light eventually
saturates. The threshold for SBS is particularly low, because the
gain coefficient is relatively high when compared to other non-
linearities such as SRS. The effective Brillouin gain coefficient
is given by

g̃B =
∆νB

∆νB + ∆νs
gB(νB) (6)

where gB(νB)(∼ 5 × 10−11 m/W) is the maximum Brillouin
gain obtained for a perfectly monochromatic signal and ∆νB

and ∆νs, the spectral widths of the Brillouin and signal beams
respectively. The Brillouin gain can thus be reduced or, equiv-
alently, the threshold raised by increasing the spectral width
of the signal beam through dithering, as indicated in the pre-
vious section. Another technique used to mitigate SBS is the
application of RF tones to the signal, which redistributes the
power over several sidebands. Concurrently with the develop-
ment of new schemes to minimize SBS, new fiber structures
are being investigated. A new dispersion-decreasing fiber was
recently designed and fabricated that showed a 7-dB increase
in the threshold over conventional fibers [19]. The decreasing
dispersion is achieved through a progressive reduction of the
core radius along the fiber. A similar result can be obtained by
introducing a GeO2 concentration gradient along the fiber [20].
Even more promising are the photonic crystal fibers (PCFs).
These have been shown to exhibit SBS thresholds as high as
18 or 20 dBm [21]. The fundamental reason for the higher SBS
thresholds of these new fibers may be a lower degree of overlap
between the acoustic and optic modes. Indeed, (5) assumes
perfect overlap between the two, which only happens for very
special index profiles.

Although dominated by one major peak due to the longi-
tudinal acoustic wave, the SBS spectrum usually shows other
peaks as well, reflecting the presence of several acoustic modes
[22], [23]. This is particularly true for small core fibers, in
which the finite numerical aperture can result in acoustic dif-
fraction and the generation of both longitudinal and transverse
modes [24]. The influence of acoustic diffraction on nonstation-
ary SBS in small core fibers can also lead to new dynamical
effects, such as the generation of a stable train of compressed
pulses [25]. This effect appears to be related to an MI that is
transferred from the pump to the Brillouin Stokes wave, creat-
ing backward-propagating Brillouin solitons [26]. The original
aspect of this Brillouin-soliton generation is that it can occur
even in the absence of dispersion (GVD, β2 = 0) because it
relies on the presence of a solitary acoustic wave [27]. It also
gives rise to both forward and backward scattering (FSBS). A
similar SBS-driven effect may be at work in the generation of
short optical pulses from a phase-modulated continuous-wave
(CW) beam [28]. Related effects to the one described above
have been proposed to control the speed of light in a fiber [29]
and for an active-fiber delay line [30].

Another common application of SBS is that for narrow-
linewidth amplifiers [31] and lasers [32], [33]. An original
implementation of a Brillouin laser has been proposed and
demonstrated in an erbium-doped fiber [34]. There, the com-
bination of SBS and erbium gain leads to the appearance of
strong higher order Stokes waves [35] or a comb of frequencies
with ∼ 10-GHz line spacing [36]. Applications to microwave
photonics have also been proposed [37], [38].

Polarization plays an important role in SBS, as well as in
the other nonlinearities discussed in this paper. The interaction
of two optical modes is minimized when the two modes have
orthogonal states of polarization (SOP) [39]. Therefore, one
way to mitigate SBS is to multiplex two equivalent signals
with orthogonal SOP, each with half the total launched power
desired. It is worth noting, however, that these two polarizations
can still interact and generate SBS, albeit less effectively, since
it involves the electrostriction tensor that has off diagonal as
well as diagonal terms. One can show that mixing two “half-
signals” with orthogonal SOPs raises the effective threshold by
∼ 1 dB [40]. If, in addition, the two half-signals are shifted
in frequency relative to each other by more than the Brillouin
width ∆νB, the effective threshold is then raised by the full
3 dB (or a factor of 2).

With the Stokes wave being backscattered, SBS can also
be used for remote time-domain reflectometry [41]. In this
latter application, a CW probe and a pulsed pump are counter-
propagated in the fiber, with the probe downshifted by the
Brillouin frequency acting as the Stokes wave. Any mechanical
change in the fiber can then be detected from the correspond-
ing change noted in the Stokes signal, and the location of this
change can be determined remotely by its arrival time. Because
of the polarization dependence of the SBS gain, this technique
can also be used to determine the SOP of the light at any point
along the fiber [42].
2) Stimulated Raman Scattering (SRS): SRS differs from

SBS in three ways. First, due to the lower Raman-gain co-
efficient gR ∼ 1 × 10−13 m/W, SRS occurs at much higher
powers than SBS, which are typically greater than ∼ 1 W
[43]. Second, the Raman shift, ∼ 13.2 THz in silica, is much
greater than the Brillouin shift. Thirdly, SRS generates a Stokes
beam both forwards and backwards, although more efficiently
in the forward direction [15]. Over the past 10 years, SRS
has been of particular interest for fiber amplifiers and lasers.
It has also been exploited for several other applications, such
as wavelength conversion, optical modulation, and switching.
Finally, combined with parametric nonlinearities, it can give
rise to a variety of optical effects, such as ultrashort pulse or
SCG. We discuss these different applications in turn.

Raman fiber amplifiers offer two significant advantages over
EDFAs [44]. The first one is that the maximum gain is obtained
at a frequency shift that is relative to the wavelength of the
pump laser and not at a fixed absolute frequency [45]. The
latter can therefore be chosen to provide maximum gain in
any desired wavelength range, S-, C-, or L-band. Second, the
gain bandwidth is much greater than that provided by EDFAs
(> 100 nm versus 35 nm) and can be further widened by
a proper choice of the fiber-material composition. Although
the SRS gain curve is not really flat over the 100 nm or so
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bandwidth available, it can be made flat within 1–2 dB in
several ways. The first and passive way is to introduce a
wavelength-selective loss and artificially clip the higher gain
central portion of the curve. A second way is to use several
pumps at staggered wavelengths, so that the gain curve of each
one complements the gain curves of the others [46]. In a more
sophisticated version of this second scheme, called dynamical
gain flattening, the pump powers are constantly adjusted in
order to respond to variations in signal intensity in a particular
wavelength range and maintain a constant overall gain. This is
particularly important in WDM systems in which the gain in
any particular wavelength range can be significantly affected
when channels are added or dropped in that range.

SRS can be used for lumped as well as distributed ampli-
fication in communication systems [47]. In the lumped mode,
amplification is provided by about 80 m of a small core fiber
inserted in the system as a distinct unit and pumped separately.
In the distributed mode, the transmission fiber itself is used
as the gain medium. Through SRS, power is progressively
transferred from shorter wavelengths to longer ones (Stokes
process) over the characteristic Raman-gain length LG =
(gRP/Aeff)−1. After this length LG, the pump has transferred
most of its power to the signal, which then progressively atten-
uates itself along the remainder of the fiber. This may result in
a low signal power and poor performance at the receiver end.
Therefore, a combination of pumps is often used in fiber optic
links, some copropagating and the others counterpropagating
with the signals, to optimize the optical-signal-to-noise (OSNR)
ratio at the receiver. Simultaneously pumping from both ends
of the fiber span also provides better results in terms of gain
flatness. One drawback of the copumping scheme is the transfer
of relative intensity noise (RIN) from the pump laser to the
Stokes signal [48], [49].

A particular aspect of distributed Raman amplification in
WDM systems is the transfer of energy from channels at shorter
wavelengths (higher frequencies) to channels at longer wave-
lengths within the gain bandwidth. This introduces a positive
tilt in the powers of successive channels [50]. The gain in
different parts of the spectrum must therefore be adjusted in
order to compensate for this tilt and ensure equal channel power
at the receiver input. This can be achieved by introducing, at
an appropriate point in a fiber span, a broadband filter with a
negative tilt, or a high-pass filter [51], [52]. A comprehensive
analysis and design methods are presented in [47].

SRS gain is also being extensively used in a cavity con-
figuration for laser applications. A Raman fiber laser consists
of a Raman active fiber (usually a small-core HNLF) placed
between two sets of cascaded Bragg gratings. Each grating pair
defines a cavity that lases at a particular Stokes wavelength,
and successive gratings reflect light from increasingly higher
Stokes orders. As an example of a Raman fiber laser [53], an
initial pump beam is generated at ∼ 1050 nm in an ytterbium-
doped fiber and launched into a phosphate fiber with first Stokes
light at ∼ 1210 nm. From successive conversion to as high as
the fifth- or sixth-order Stokes, it is possible to generate output
light at 1550 nm. A pair of gratings ensures sufficient gain at
each successive Stokes wavelength. As was mentioned earlier,
SRS provides much more flexibility than erbium-stimulated

emission in the design of a laser, since the wavelength of
the light generated is only relative to the wavelength of the
pump, which can be chosen at an appropriate position. Another
important point that should be mentioned is that, although
the intrinsic threshold for SRS is relatively high for a single
pass, as in an amplifier, it can be much lower in a laser-cavity
configuration because of multiple passes of the beam through
the Raman-gain medium [54].

From the very fact that SRS provides gain at a wavelength
that is shifted from the pump by a significant ∆λ (∼ 13 THz
or ∼ 100 nm at 1550 nm and ∼ 75 nm at 1300 nm in silica),
it can also be used for wavelength conversion from an initial
signal to a probe. One realization of this application consists in
copropagating, in an HNLF, a strong signal modulated by the
data stream and a CW probe upshifted from it by the Stokes
frequency (∼ 13 THz). Due to the Raman effect, the upshifted
or shorter wavelength probe is depleted at the benefit of the
(Stokes) signal. Since the Raman-mediated power transfer is
a function of the signal power, the negative or complementary
of the data stream carried by the signal is transferred to the
probe [55]. A similar scheme can be used for all-optical
switching or modulation. In this case, the situation is reversed.
The above (Stokes) probe becomes a control beam to which
the signal can transfer energy and the presence or absence of
the control beam allows switching [56] or modulation of the
pump [57].

The SRS applications discussed above have been under
the condition of CW or quasi-CW pump beams. There is,
however, a growing interest in the SRS of pulsed beams, in
particular for applications to high-power fiber amplifiers and
lasers. When using short pulse pumps, two additional effects
must be considered. The first one is the walk-off effect between
the pump and the SRS-generated Stokes pulse. For very short
pump pulses, the walk-off length can be significantly shorter
than the length of the fiber, which can limit the efficiency of
the Raman process. Another difference is the combination of
SRS with other nonlinearities (higher order nonlinear effects)
[58], [59]. One of the most important of these higher order
effects is intrapulse Raman scattering, a combination of SRS
and SPM or XPM that can lead, in the anomalous dispersion
regime, to the formation of very short pulses or Raman solitons
[60] and to subsequent self-frequency shifts [61], [62]. This
higher order effect can be used to generate subpicosecond
Stokes soliton pulses that are both tunable in frequency and in
duration [63]. If instead of a single pump pulse, a train of such
pulses is copropagated along with a CW signal, the combined
effects of SRS and XPM result in a train of ultrashort signal
pulses that can even be much shorter than the pump pulses
[64]. The combined effects of SRS and MI can also lead to
the formation of very-short pulses or solitons [65], [66]. As a
final example, SRS and parametric FWM between a pump and a
Stokes wave can generate the anti-Stokes wave or, equivalently,
two pump photons can simultaneously generate a Stokes and
an anti-Stokes photon, as described in the next section on χ(3)

nonlinearities. Recent measurements of the dependence of SRS
on chromatic dispersion have revealed a threefold increase in
Raman gain due to the added contribution of FWM under
phase-matching conditions [67]. With high-power picosecond
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pulses, this SRS–FWM nonlinear process is also responsible
for the generation of a broad continuum of wavelengths (see
discussions on supercontinuum below).

Besides conventional silica fibers, new high ∆n fibers are be-
ing developed for Raman applications, especially germanosili-
cate and phosphosilicate fibers [68] and bismuth-doped silica
fibers [69]. Non-silica glasses and fibers are also being inves-
tigated for providing enhanced Raman gain over an extended
wavelength range. Tellurite fibers are particularly attractive
because of the greater refractive index of TeO2 (2.3–2.4) com-
bined with its excellent chemical and physical glass proper-
ties [70], [71]. Other promising candidates are chalcogenide
(As–Se) glasses and fibers (see Section III). For example,
in a small core As–Se fiber, a Raman coefficient 300 times
greater than that of silica has been measured, giving more than
20 dB of gain in a 1.1-m length [72]. However, the attractive-
ness of the superior nonlinear optical properties of chalcogenide
fibers is somewhat moderated by the lesser chemical stability of
the glass.

C. χ(3) Nonlinearities

Type II) nonlinearities are often referred to as χ(3) nonlinear-
ities. They arise from light-induced (nonlinear) changes in the
index of refraction and can result in nonlinear refraction (Kerr
effect) or the mixing of optical beams (parametric interactions).

These nonlinearities are essentially based on the light-
induced nonlinear electronic polarization of the medium. The
refractive index can be expressed as

n = n0 + n2I (7)

where n0 is the linear index, n2 the nonlinear coefficient, and
I is the optical intensity. In silica, n2 ≈ 2.6 × 10−16 cm2/W.
The third-order susceptibility is related to n2 by [73]

n2 =
3

8n0
Re

(
χ(3)

)
. (8)

Practically, the coefficient that determines the magnitude of
the corresponding nonlinear effects is

γ =
2π

λ

n2

Aeff
(9)

where λ is the free-space wavelength and Aeff is the effec-
tive core area. For a typical single-mode silica fiber, γ ∼
20 W−1km−1. The result of these nonlinearities is to introduce
a nonlinear shift in the phase of the propagating light

φNL(z) = γP0z (10)

where P0 is the peak input power and Leff the effective length
given earlier. The nonlinear phase change can also be rewritten
in terms of a nonlinear length LNL ≡ (γP0)−1:

φNL =
z

LNL
. (11)

For a 1-mW input power at λ = 1.55 µm in a single-mode
fiber with Aeff = 50 µm2, LNL ≈ 500 m. This illustrates the

importance of these nonlinearities on the propagation of optical
signals in optical communications systems [1]. Their impact
can be particularly significant in WDM systems, in which the
total power integrated over all channels can reach 15 dBm or
more (∼ 30 mW) at any point in the fiber [2], [3]. Because the
optical power can have a spatial as well as time dependence,
χ(3) nonlinearities can modify the mode-field distribution, as
well as give rise to a variety of changes both in pulse shape
(time domain) and in spectral content (frequency domain).

χ(3) nonlinearities can be divided in two groups: SPM and
XPM in one; and parametric processes, such as FWM and third
harmonic generation (THG) in the other.

SPM, XPM, and FWM have a common origin, which can
be shown mathematically by considering the interaction of two
beams. The total electric field can then be written as

E(r, t) =
1
2

[E1 exp(−iω1t) + E2 exp(−iω2t)] + c · c. (12)

Then, substituting in (3) produces a variety of PNL terms:

1) PNL(ω1)∝ (|E1|2 +2|E2|2)E1 and PNL(ω2)∝ (|E2|2 +
2|E1|2)E2 contain both SPM (first term in each) and
XPM (second term in each);

2) PNL(2ω1 − ω2) ∝ E2
1E∗

2 and PNL(2ω2 − ω1) ∝ E2
2E∗

1

represent the FWM terms.

In the following, we present the specific aspects of each of
these nonlinearities successively, first describing their effect
on the guided propagation of light, then giving examples and
references to recent applications, especially in optical commu-
nications.
1) Self-Phase Modulation (SPM): In SPM, the intensity

modulation of an optical beam results in the modulation of
its own phase via modulation of the refractive index of the
medium. The resulting time-dependent change, or modula-
tion of the phase, leads to spectral broadening or frequency
chirping [74]

∆ω(z, t) = −∂φNL

∂t
= − 2πn2

λAeff

dP (t)
dt

z = −n2
dI(t)
dt

kz (13)

where I is the optical intensity, k and λ the wavevector and
wavelength respectively, P the optical power, and Aeff the
effective mode area given above. Because of the time derivative
in (13), it is clear that SPM is essentially a pulse effect, with
the leading edge of the pulse being red-shifted and the trailing
edge blue-shifted. In addition, the pulse spectrum exhibits
characteristic oscillations, which are due to the interference,
within the pulse, of component waves with the same frequency
but different phases. The nonlinear spectral broadening can be
either compensated or magnified by the chromatic dispersion
of the fiber. In the normal chromatic-dispersion regime (λ <
λZDW), in which red light travels faster than blue light, the
nonlinear dispersion is magnified by the chromatic dispersion,
resulting in enhanced broadening. In the anomalous dispersion
regime (λ > λZDW), the nonlinear dispersion is compensated,
leading to pulse compression or, when exactly balanced, to the
formation of solitons [75].

From the previous description, the net effects of SPM can
be seen to depend essentially on the characteristics of the
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initial pulse, its temporal shape, spectrum, and initial chirp, to
which one must add the effect of chromatic dispersion. The
shorter the pulse, the shorter the dispersion length LD, and
the more important GVD becomes. With appropriate dispersion
and pulse characteristics, SPM can be used for the spectral and
temporal compression of pulses, soliton generation and pulse
regeneration. In the following, we give further explanations on
these applications and cite recent examples.

Spectral compression of a pulse can be achieved through
SPM, provided the initial pulse is negatively chirped. In that
case, the higher frequency components at the leading edge
of the pulse are being red-shifted by SPM, while the lower
frequency components at the trailing edge of the pulse are si-
multaneously being blue-shifted, thus canceling the initial chirp
of the pulse. As an example, spectral compression from 8.4 to
2.4 nm of negatively chirped pulses has been reported, with a
constant phase over the spectral and temporal envelopes, char-
acteristic of near-transform-limited pulses [76]. This spectral-
compression method has also been applied in fiber amplifiers to
obtain picosecond pulses with peak powers of several kilowatts
[77]. A general theoretical treatment is given in [78].

Temporal pulse compression is usually achieved in two
stages. In the first stage, a pulse is spectrally broadened and
linearly chirped through SPM in the presence of normal dis-
persion. In the second stage, the frequency components of the
chirped pulse are temporally compressed in a section of fiber
with anomalous dispersion. The temporal pulse-compression
part can also be achieved with a prism or a grating pair. Another
scheme has also been proposed, using an unchirped apodized
fiber Bragg grating as the nonlinear dispersive element in the
first stage of the compressor [79]. The compression is then due
to the strong dispersion of the Bragg grating at frequencies
close to the edge on the long-wavelength side of the photonic
bandgap, where the transmission is still high. With this sec-
ond scheme, pulse compression can be achieved over shorter
lengths and with fewer constraints. System examples of pulse
compression are presented in [80] and [81], showing a pulse
broadening and recompression ratio greater than 300 over a
2.5-km transmission link. One of the choices in pulse com-
pression is whether to pre- or post-compensate the chromatic
dispersion (i.e., before or after the SPM). A comparison of
both methods suggests that SPM is more effective in the post-
compensated links, resulting in stronger pulse narrowing and
yielding a low eye-opening penalty, which is, moreover, power
independent over a wide range of powers [80], [82].

Pulse compression is also an integral part of the pulse-
regeneration process in optical communication networks, which
includes retiming, recompression, and reamplification (3R). 3R
regeneration can be achieved by synchronous modulation, SPM
in an HLNF section, narrowband filtering or slicing and finally
Raman or parametric reamplification [83]. Filtering is used if
the fiber has anomalous dispersion, and slicing if it has normal
dispersion. Slicing is better able to stabilize the amplitude of
the pulse but requires a higher signal power in the fiber.

SPM in the anomalous dispersion regime can also lead to two
other nonlinear effects, MI and soliton generation. MI leads to
the breakup of a CW wave into a train of very narrow pulses
[84]. It occurs when the CW lightwave is subjected to a small

periodic perturbation with frequency Ω and wavevector K.
Starting from the nonlinear Schrodinger equation containing an
SPM term, one can show that the wavevector of the perturbing
wave becomes imaginary for perturbation frequencies Ω < Ωc,
with Ωc given by [7], [85]

Ω2
c =

4γP0

|β2|
=

4
|β2|LNL

(14)

in which β2 is the GVD. The perturbation introduces a dy-
namical modulation of the nonlinear self-phase shift and a
periodic chirp of the CW beam. Under the influence of the
GVD, this periodic chirp leads the breakup of the CW beam
into a train of ultrashort pulses with a repetition rate equal
to Ω. The fastest growth of these pulses or the maximum
MI gain occurs for Ωmax = Ωc/

√
2. However, different dis-

persion profiles can modify the MI gain significantly. For
instance, the MI gain spectrum has been shown to be much
broader in dispersion-decreasing fibers than in conventional
fibers [86]. As for SBS and SRS, MI can also be initiated by
noise. In that case, the noise component at frequency Ωmax,
having the maximum gain, grows preferentially. In optical
transmission systems with RIN and amplified-spontaneous-
emission (ASE) noise, such a noise-generated MI can impair
the performance of the system if the dispersion of the fiber
is not properly compensated [87]. Besides β2, higher even-
order dispersions can also influence MI [88], as well as odd-
order dispersions if wavelength-dependent loss is present [89].
Finally, although SPM-induced MI occurs in the anomalous
dispersion regime, MI can also be induced by XPM between
two copropagating beams in the normal dispersion regime
(see XPM below).

The above discussion of MI was restricted to the scalar case.
However, a modified type of MI can occur, called vectorial
or polarization MI (PMI), when the CW beam excites both
polarization components simultaneously [90], [91]. Like MI,
PMI is due to the exponential growth of a periodic perturbation
and manifests itself by the breakup of the CW beam into a train
of very short pulses. In PMI, however, the coupling between the
two polarization components of the beam plays the essential
role. PMI can, in fact, be described as the result of XPM
between these two components in the presence of a periodic
perturbation on the amplitude of the CW beam. Because it
involves XPM between two polarization components, PMI can
occur in both the anomalous and the normal dispersion regime.
Several different behaviors can then be observed, depending on
the intrinsic modal dispersion of the fiber and on the nature
and degree of birefringence. One must consider three separate
cases. i) In highly birefringent fibers, the coherence between
the two polarization components can be neglected and PMI de-
pends simply on the CW beam power and on the birefringence
of the fiber [92]. At lower power, the gain curve is narrow
and its maximum occurs at a higher frequency Ωmax, while
at higher power, the gain curve is broader, and its maximum
occurs at a lower frequency. Ωmax can also be tuned by modi-
fying the birefringence of the fiber. PCFs provide a particularly
interesting example of the effect of birefringence on PMI.
3.9-THz sidebands were recently reported in an elliptical core
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PCF with a 7% eccentricity [93]. ii) In weakly birefringent
fibers, the coherence between the two polarization components
must be taken into account. This adds an FWM term in the non-
linear polarization [see b) below (12)] and leads to a more com-
plex PMI spectrum. Different behaviors are then observed when
the CW beam is polarized parallel to the slow or parallel to the
fast axis. In the former case, the nonlinear birefringence adds to
the intrinsic linear birefringence. In the latter case, it reduces it
and a particular instability can develop for optical powers such
that the nonlinear birefringence exactly cancels the intrinsic
linear birefringence. In that case, the derivative of the polar-
ization beat length with respect to power dLB/dP becomes
infinite, and large fluctuations in the output polarization can be
induced by small power fluctuations (polarization instability).
iii) Isotropic fibers represent a third case, with zero birefrin-
gence. Although this case is not strictly realizable, fibers that
are spun during drawing do indeed exhibit very little intrinsic
birefringence [94], [95]. Nonetheless, they can still exhibit
PMI, albeit independent of the polarization of the incident
beam, as expected in an isotropic medium. New applications
also become possible, such as the generation of polarization-
domain walls [96].

Finally, a number of recent studies have investigated fibers
with more complex dispersion characteristics. For instance, a
higher MI gain and a greater stability of the pulses generated
through it have been shown in dispersion-decreasing fibers
[86]. MI has also been investigated in dispersion-flattened
fibers [97], in which higher order dispersions must be in-
cluded, and in fibers with periodic and random dispersion [98].
In the case of periodic dispersion (as in dispersion-managed
fibers), new sidebands appear and the MI gain bandwidth
decreases. Conversely, random dispersion reduces the overall
MI gain.
2) Cross-Phase Modulation (XPM): XPM is a similar effect

to SPM, but it involves two optical beams instead of one
[99]. In XPM, the intensity modulation of one of the beams
results in a phase modulation of the other. As in SPM, the
phase modulation translates into a frequency modulation that
broadens the spectrum. However, because the total intensity is
the square of a sum of two electric-field amplitudes, the spectral
broadening caused by XPM is twice as large as in SPM

n =n0 + n2|E1 + E2|2 ⇒ φω1
NL(z)

=
2πn2

λAeff

[
|E1|2 + 2|E2|2

]
. (15)

In the expression for the nonlinear phase shift above, the
presence of two terms shows that XPM (second term) is always
accompanied by SPM (first term) [see also (12)]. A similar
expression can be written for the second beam, φω2

NL(z). If one
of the two beams (the pump) is much stronger than the other
(the probe or signal), XPM will primarily act from that pump
beam to the weaker signal beam. It should also be obvious that
XPM requires that the two beams overlap in time and in space.
In the case of pulses, this means that they should have similar
GVDs, so that the two modes do not walk off each other.

As for SPM, XPM introduces a nonlinear phase shift which,
according to (13), translates into spectral broadening. XPM

can also result in the development of a multipeak temporal
structure of the pulses or optical wavebreaking. This is due to
the combined effect of the XPM-induced chirp and the GVD.
For normal dispersion, the wavebreaking will appear on the
leading edge of the signal pulse if the latter interacts with the
trailing edge of the pump pulse and on the trailing edge of
the signal pulse if it interacts with the leading edge of the pump
pulse. This is due to the different sign of the XPM-induced
chirp in the two cases, combined with the different propagation
velocities of the different parts of the signal pulse induced by
the GVD. In one case, the peak of the signal pulse will travel
faster than its leading edge, and in the other case, the trailing
edge of the signal pulse will travel faster than its peak, causing
intrapulse interference and a multipeak structure. Also, similar
to the SPM case, a periodic perturbation can lead to an insta-
bility (XPM-induced MI) and to the breakup of the CW beams
into trains of very short pulses [100].

Compared to SPM, however, the XPM interaction of two
beams results in significant differences in the effects observed.
First, XPM can occur when either one or both beams are in
the normal as well as in the anomalous regime, although the
stability range will be different for the two cases since the
nonlinear dispersion can be either compensated or magnified
by the intrinsic dispersions of the beams. A particular behavior
can therefore be selected by designing the dispersion of the fiber
appropriately. Second, the nonlinear phase shift and its relative
weight with respect to the intrinsic dispersion can change as
the two beams with their different GVDs propagate along
the fiber.

Because it is a nonlinear effect resulting from a two-beam
interaction, XPM can be used for a number of all-optical ap-
plications in communication networks: wavelength conversion,
[101] demultiplexing [102], [103], switching [104], and other
optical-control applications. Being a very fast process, XPM
is particularly attractive for wavelength conversion and can,
in principle, scale to very-high bit rates and convert multiple
wavelengths simultaneously with little or no degradation of
the signal. There are, however, some limitations, especially
at high bit rates, due to the dispersive walk-off that results
from the power-dependent nonlinear dispersion [105]. Because
XPM always occurs jointly with SPM, it can also be used
for simultaneous demultiplexing and regeneration [106]. XPM
can be used advantageously for control applications because,
although it does not cause energy to be exchanged between
optical beams, it can significantly alter the pulse shape and
timing. In particular, one can use a “shepherd” pulse at a
separate wavelength from the signal to manipulate and control
the signal pulses [107]. XPM has also been used to generate
a comb of frequencies centered at an arbitrary wavelength by
interacting a femtosecond pulse train with a CW beam [108].
On the reverse side, XPM can create significant problems in
WDM communication networks because of the crosstalk it can
induce between nearby channels [109]. This can affect the
pulse shapes and amplitudes in different channels and lead to
the time-dependent depolarization of nearby channels [110].
One solution to mitigate this problem is to introduce a lim-
ited amount of dispersion in the system, sometimes by alter-
nating the sign of the dispersion in successive fiber spans,
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keeping a small but finite residual dispersion (dispersion-
managed fiber).

When taking polarization into consideration, an array of new
nonlinear effects can be predicted and are indeed observed in
fibers. As should be expected, these effects depend intimately
on the particular birefringence characteristics of the fiber and
on the SOP of the optical wave(s). This birefringence can be
intrinsic to the fiber, but it can also be induced by optical
nonlinearities. The nonlinear contributions to birefringence are
given by [111]

∆nx =n2

(
|Ex|2 +

2
3
|Ey|2

)
and

∆ny =n2

(
|Ey|2 +

2
3
|Ex|2

)
(16)

where n2 is the nonlinear parameter defined earlier. From (16),
it is easy to see that the nonlinear birefringence and related
effects must depend on the relative optical intensities in the x
and y direction. These two components interact nonlinearly in a
way that is analogous to XPM, resulting in a relative nonlinear
phase shift between the two components [112]:

∆φNL = γLeff(1 − B)(Px − Py) (17)

in which Px,y are the powers in the x and y components,
respectively, and B describes the ellipticity of the fiber (B =
2/3 for a linearly birefringent fiber). Such a relative nonlinear
phase shift can be introduced by copropagating a strong pump,
polarized along the x-axis of the fiber, along with a
weak arbitrarily polarized signal. ∆φNL then determines the
particular evolution of the polarization as the beam propagates
and can, for instance, lead to a rotation of the polarization
(optical Kerr effect) [113], [114]. When taking the respective
polarization of the two beams into account, XPM can also give
rise to interesting temporal and spectral polarization effects. In
a pump-probe situation, the probe polarization can be shown
to rotate, with different parts of the pulse developing different
SOP [114].
3) Solitons: Under the combined influence of SPM or XPM

and dispersion, short pulses can evolve towards a solitonic
state, in which they retain their shape as they propagate, and
can travel undistorted over long distances [115]. Solitons occur
when the nonlinear dispersion is exactly compensated by the
intrinsic chromatic dispersion across the entire pulse [75],
[116].This condition is satisfied for pulses whose normalized
shape can be described by the following sech function [117]

u(ξ, τ) = η sec h(ητ) exp
(

iη2ξ

2

)
(18)

in which the parameter η designates the soliton amplitude,
τ = t/t0 is the time t normalized by the width of the
incident pulse t0, and ξ = z/LD is the distance traveled nor-
malized by the dispersion length LD. A fundamental char-
acteristic of solitons is the relationship that exists between
its width and its amplitude. In real units, the soliton width

changes with η as t0/η, i.e., it is inversely proportional to its
amplitude.

Although the necessary condition for the existence of soli-
tons might seem improbable, in practice, very short pulses can
spontaneously evolve towards a solitonic state. For example,
the ultrashort pulses generated through MI can evolve into
solitons by shedding energy at their edges where SPM is not
as strong as in the central part of the pulse. Alternatively,
sufficiently narrow and energetic pulses directly launched into
a fiber can also evolve into solitons in the same manner. If
solitons can form relatively easily, they can nevertheless be
annihilated by perturbations, such as loss or noise. By reducing
the amplitude of the solitonic pulse and, therefore, also that of
the SPM- or XPM-induced nonlinear dispersion, loss in a fiber
can weaken and even destroy a soliton. However, the effect
of loss on a soliton can be compensated by an appropriate
dispersion profile along the fiber. Dispersion-decreasing fibers,
for example, have been shown to provide greater stability for
fundamental solitons [118]. Random variations in the intrinsic
dispersion of a fiber can also lead to instability of solitons.
This instability can be overcome by periodically alternating the
dispersion of the fiber so that the average GVD is low, while
the local GVD remains relatively large and can compensate for
the nonlinear dispersion. These dispersion-managed solitons, as
they are called, are not exactly similar to the solitons described
earlier. Although they are stable and can propagate over long
distances, their amplitude and width oscillate in a periodic
manner, they are chirped, and their shape is closer to a Gaussian
than to a hyperbolic secant form [119].

Solitons are now being used in long-haul optical-
communication systems, and a number of recent and not-so-
recent review papers have covered the subject well [120]–[124].
Dispersion-managed solitons for optical-fiber communications
are reviewed in [125] and [126]. Finally, it should be clear from
(18) that the solitons discussed above are temporal solitons.
Over the past few years, however, another type of soliton has
been extensively studied, the spatial soliton [127]. There also
exists many review articles on this subject and the interested
reader is referred to these [128], [129]. A particularly interest-
ing aspect, and one of relevance for optical communications, is
the interaction between spatial solitons and its control [130].
4) Parametric Processes—FWM: The interaction of two or

more lightwaves can lead to a second kind of χ(3) nonlinear-
ities. These involve an energy transfer between waves and not
simply a modulation of the index seen by one of them due to the
other. This interaction is often referred to as “parametric,” and
these nonlinearities lead to parametric processes. In addition
to sufficiently high powers to induce optical nonlinearities (n2

or γ), such coherent processes also require that the two light
waves be phase-matched, i.e., that their phase velocities be the
same [131]. This condition is much more stringent than the
one already stated for XPM, in which only the group velocities
needed to be similar so that pulses would overlap. The phase-
matching condition applies to the sum of the wavevectors of the
different waves participating in the process and can be written
as [132]

κ ≡ ∆kM + ∆kW + ∆kNL = 0 (19)
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in which the material contribution is ∆kM =
∑

i niωi/c,
∆kW =

∑
i ∆niωi/c, where ∆ni is the waveguide-dispersion

contribution to the index experienced by wave i, and ∆kNL =∑
i γPi. The phase-matching condition can be satisfied through

changes in the balance between material dispersion, waveguide
dispersion and nonlinear dispersion experienced by the dif-
ferent beams. It is important to note that this condition can
only be satisfied if one of the three dispersions is negative, as
for instance ∆kM in the anomalous dispersion regime. Also,
for single-mode fibers, ∆kW � ∆kM, except near the ZDW
λZDW. The wavelength range near the ZDW of the fiber is a
special one, where the waveguide and nonlinear dispersion can
be adjusted to cancel the small material dispersion. The first one
can be adjusted through proper fiber design, and the second, by
proper choice of the optical powers [133].

χ(3) parametric processes include FWM, THG, and para-
metric gain. Second harmonic generation (SHG), which is a
χ(2) process, and therefore not observed because of the optical
isotropy of optical fibers, can nevertheless be induced through
poling, and can then lead to cascaded χ(3)-like parametric
processes. In a χ(3) parametric process, three waves interact
to produce a fourth one. Because this is a coherent interaction
(between fields and not just between intensities or powers),
both frequencies and wavevectors must be conserved (energy
conservation and wavevector conservation or phase matching):

±ω1 ± ω2 ± ω3 = ±ω4 and ±k1 ± k2 ± k3 = ±k4. (20)

Clearly, there can be a large variety of such processes, depend-
ing on the particular product of the four fields. Because of the
low probability of satisfying the phase-matching condition, the
mixing of four fields of different frequencies is not very likely
in general. Two of the more commonly encountered processes
are FWM and THG:

−in FWM : ω1 + ω2 = ω3 + ω4 and k1 + k2 − k3 − k4 = 0.
(21)

A special case is degenerate FWM, in which two high-intensity
waves, with respective frequencies ω1 = ω2 and ω3 = ω4,
interact. The mixing process then generates two new waves at
(2ω1 − ω3) and (2ω3 − ω1). If a signal is propagating with the
same frequency as one of these two new waves, it will be am-
plified and a second wave, the idler, will be generated. Partially
degenerate FWM can be used for frequency conversion:

ω1 = ω2 → 2ω1 − ω3 = ω4 (22)

which can also be rewritten as ω1 − ω3 = ω4 − ω1. Through
this partially degenerate FWM, a strong pump generates two
waves at ω3 and ω4, respectively designated as Stokes and anti-
Stokes, by analogy with the SRS or the signal and the idler.

−in THG : ω1 = ω2 = ω3 → 3ω1 = ω4. (23)

One of the two most common applications of FWM is
wavelength conversion or wavelength exchange [134]. The con-
ventional way of performing wavelength conversion is through
phase conjugation of the signal to the idler according to (22),

with ω1 being the frequency of the pump, ω3 the frequency of
the signal, and ω4 the idler frequency. Due to phase matching,
ω3 and ω4 are symmetric with respect to the ZDW [135].
A scheme for tunable wavelength conversion has also been
demonstrated over a wide spectral range through (asymmetric)
FWM by choosing two pumps at frequencies ω1 and ω2, with
the signal at frequency ω3 generating the idler at ω4 [134]. In
this scheme, the signal and idler wavelengths do not need to be
symmetric with respect to λZDW and can, therefore, be chosen
at will over a wide interval.

The other major application of FWM is parametric amplifi-
cation, which is the basis for optical parametric amplifiers and
lasers. Parametric amplification, in its simplest form, results
from the degenerate FWM process described above, in which
a strong pump at ω1 is launched in the fiber along with a weak
signal at ω3, resulting in the amplification of the latter and the
generation of the idler at frequency ω4. The gain g is then given
by [136]

g2 =
[
(γP1)2 −

(κ

2

)2
]

(24)

where γ is the nonlinear coefficient (9), κ, the phase mis-
match introduced earlier (19), and P1 is the pump power. As
indicated above, κ = 0 for perfect phase matching. Parametric
amplification has also been demonstrated using a modulation
interaction between two spectrally distant CW pumps. The
proposed scheme provides flat gain over a bandwidth in excess
of 22 nm [137]. It is worth noting that, because of the generation
of an idler, both the amplification of the signal and wavelength
conversion can be done simultaneously with FWM [136]. Other
dual-purpose applications are parametric amplification and de-
multiplexing in WDM systems, when the signal is composed
of multiwavelengths [138]. The desired wavelength can then
be isolated through filtering. An excellent review of fiber-
based optical parametric amplifiers and their applications was
recently published by Hansryd et al. [139].

FWM has also been applied to the optical regeneration or
reshaping of pulses [140]. Injecting a signal and a strong
CW pump into a DSF results in several wavelength-converted
replicas of the signal, with a step-index transfer function for
higher order mixing products. A similar effect can be used to
expand a modulated CW lightwave into a comb of discrete
and equally spaced frequencies [141]. A novel FWM-based
dispersion-monitoring method has also been demonstrated with
a 40-Gb/s signal [142]. The signal pulse stream, used as a
parametric pump, is mixed with a weak CW lightwave at a
different wavelength. The power of the idler generated is shown
to depend on the pulsewidth, and therefore on the accumulated
dispersion.

Due to the phase-matching condition, dispersion plays an
even bigger role in FWM than in other nonlinear processes.
In conventional fibers, dispersion fluctuations can translate
into λZDW fluctuations and reduce FWM efficiency [143]. If
needed, FWM can also be suppressed in a more controlled
manner by using dispersion-decreasing fibers [144], which can
advantageously relax the power limitations in WDM systems.
Polarization mode dispersion (PMD) constitutes another source
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of dispersion, which can lead to fluctuations in λZDW and,
as a result, to fluctuations in idler power [145]. A general
vector theory of polarization effects on FWM and parametric
amplification is presented in [146]. In fiber transmission
systems, polarization can also be used to limit intrachannel
nonlinear effects. One method that has been proposed is to
use orthogonal SOP for adjacent bits [147]. Birefringence and
its variations along the fiber add yet another dimension to
polarization effects in FWM. The case of random birefringence
is particularly relevant to optical communications, since most
single-mode fibers used are weakly birefringent [148]. Finally,
parametric processes, in general, and FWM in particular,
make a special contribution to the nonlinear generation of a
supercontinuum of frequencies, an effect that has primarily
been observed in new PCFs (see below).

III. HIGHLY NONLINEAR FIBERS (HLNFS)

In order to take advantage of the nonlinearities described
above and to further enhance them, novel optical fibers have
been designed and fabricated [149]. According to the previous
equations, the parameters that determine the strength of these
nonlinearities are the effective area Aeff , the effective length
Leff , and the nonlinear coefficient γ. Clearly, these nonlineari-
ties become important when the effective length Leff exceeds
the relevant nonlinear length, LG or LNL, as given at the
beginning of this paper. Another essential characteristic for
the development of distributed optical nonlinearities in fibers
is the chromatic dispersion, which can be characterized by the
dispersion length LD. The shorter the LD, the more important
the role dispersion plays. We first describe the novel HNLFs
with respect to the major fiber parameters introduced earlier
and then discuss fibers with new dispersion and birefringence
characteristics.

HNLFs can be obtained by reducing the effective core area
Aeff and increasing the index contrast ∆n ≡ ncore − nclad, in
order to confine the mode more tightly in the core, or by
increasing the gain coefficient g. The reduction of Aeff can
be achieved by an appropriate design of the index profile,
both in terms of its width and contrast. Reducing the size of
the doped region increases the optical power density in the
core. Simultaneously, increasing the doping level increases the
index contrast between the core and the undoped cladding
region, thus pulling the mode further inward to the center of
the core region. Novel silica fibers have been designed and
fabricated, in which the core size has been reduced, as well
as more heavily doped [150]. With a 2-µm core radius and
an increased Ge-doping, a ninefold increase in fiber nonlin-
earity has been achieved, compared with conventional silica
DSFs [151]. Such fibers can exhibit nonlinear coefficients γ
of ∼ 20 W−1km−1 and low attenuation of 0.5 dB/km and
have been shown to exhibit greater FWM conversion effi-
ciency [152]. Pb-doped silica fibers have been fabricated with
much higher nonlinear coefficients γ ∼ 640 W−1km−1 but
with a high loss of 2.6 dB/m [153]. Bi2O3-doped silica fibers
with a step-index structure and a very small effective area
Aeff = 5 µm2 have been shown to have γ > 600 W−1km−1

[154], [155].

An advantage in changing the index profile is the possibility
to shift the ZDW from 1310 nm to the most common operating
wavelength of 1550 nm, and thus enhance optical nonlinearities
at that wavelength. This can be achieved with a high Ge-
doping level in the core and fluorine doping of the cladding,
which, in addition to shifting λZDW to 1550 nm, also increases
the index contrast and therefore the confinement [156]. The
resulting higher nonlinearities have recently been exploited
for a broadband dynamic dispersion-compensation fiber device
based on SPM. In this device, dynamic compensation of up
to 240 ps/nm has been demonstrated with a 40-Gb/s signal
[157]. Conversely, high-performance dispersion-compensating
fibers have been fabricated in which the nonlinear effects have
been suppressed, particularly SPM [158]. In designing fibers
with particular dispersion characteristics, PCFs offer the great-
est versatility yet. These are fibers in which the cladding is
composed of air holes running the length of the fiber parallel
to the core. They are discussed in the next section.

From the above, it is clear that the addition of appropriate
dopants in silica can significantly increase the gain coefficient
g. Fibers made of glasses other than silica also show much
promise for nonlinear applications. The most investigated are
tellurites, mixed with Na and Zn [159]–[161] or Zn and Nb
[162], Zn and W [163], chalcohalides, e.g., GeS2-based with
n2 ∼ 7.5 × 10−15 cm2/W [164], and chalcogenides [165], e.g.,
As2Se3 [166] and As2S3 with n2 ∼ 1 to 4 × 10−14 cm2/W
[167], [168]. Almost two orders of magnitude higher than
pure silica. In As2S3, ultrafast switching of pulse trains at
80-GHz repetition rates has been demonstrated with low timing
jitter [169].

If optical fibers only exhibit third-order or χ(3) nonlineari-
ties, it is important to note that second-order or χ(2) nonlinear-
ities can be electrically induced [170], [171] or photoinduced
[172]–[174]. This is particularly true of those fibers made
of glasses containing polar radicals [175]. When exposed to
subbandgap light, these fibers become birefringent and exhibit
χ(2) nonlinearities [176]. Similar photoinduced effects can be
obtained in silica fibers after X-ray or neutron irradiation.
Photonic Crystal Fibers (PCFs): The most exciting devel-

opment in fibers and fiber nonlinearities is undoubtedly the
invention of the microstructured fibers [PCF and photonic
bandgap fibers (PBGF)] [177], [178]. These have added an
entirely new dimension to fiber design and are creating many
new opportunities for nonlinear optical effects and applications
[179]. PCFs are index guiding, i.e., they guide light through
total internal reflection (TIR). However, because of the holey
cladding, their guiding and modal properties are significantly
different from those of conventional fibers [180]. First, because
the effective refractive index of the holey cladding decreases
with decreasing wavelength, PCFs can be made single mode at
all wavelengths [181]. This is easily seen from the expression
for the V number

V ≡ 2π

λ
a

(
n2

core − n2
cladding

) 1
2 (25)

in which λ is the free-space wavelength, a is the core radius,
and ncladding is an effective index that depends on the particular
geometry of the cladding (hole size d and separation or pitch Λ).
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In practice, PCFs with d/Λ ≤ 0.45 are single mode at all
wavelengths [182]. For values greater than 0.45, PCFs still
behave as single-mode fibers for wavelengths that are longer
than a certain cutoff wavelength. Second, because of the large
index contrast between the solid core and holey cladding, the
effective area Aeff can be made very small and the light more
tightly confined within the solid core. A numerical method
for the calculation of Aeff and results are given in [183]. At
1.55 µm and for d/Λ = 0.45 with Λ = 3 µm, Aeff is found
to be approximately 13 µm2. This can be compared with the
effective area of SMF28, Aeff ≈ 80 µm2. Consequently, PCFs
are characterized by a greater critical angle θc and a much
greater numerical aperture NA [184]:

NA = sin θc ≈
(

1 +
πAeff

λ2

)− 1
2

. (26)

Using the above values, NA ∼ 0.24 for PCF, compared to
∼ 0.08 for conventional fibers. This can obviously be an issue
when coupling PCFs to conventional fibers, and it is often con-
venient to use a short length of an intermediate NA conventional
fiber to splice to the PCFs in the splicing operation. Although
a small-core PCF offers tight mode confinement, it can also
be accompanied by significantly higher confinement losses,
which are damaging for applications [185]. Proper design can
minimize these losses and yield optical nonlinearities in PCF
more than 50 times higher than in conventional fibers. Also,
with these higher nonlinearities, shorter lengths of fibers are
needed and the loss becomes less of an issue.

In addition to these special modal properties, PCFs also
possess very special dispersion properties, which depend on the
particular geometry of the fiber, hole diameter d, and pitch Λ. In
particular, they often exhibit an inverted bell-shaped dispersion
curve, with two ZDWs. For example, an ultraflat dispersion of
less than 1 ps/nm/km was recently reported between 1.1 µm
and ∼ 1.8 µm for a PCF with d/Λ = 0.22, and Λ = 2.59 µm,
giving NA ∼ 0.23 at 1.5 µm and Aeff ≈ 13 µm2 [186].

The special properties of PCFs (tight confinement of the
light and tunable dispersion) make them particularly suitable
for the observation of nonlinear effects [187]–[189]. One of
the most spectacular and now commonly reported effects is
the generation of a continuum of wavelengths by a pulsed
monochromatic beam propagating in the fiber, also called SCG
[190], [191]. A number of studies, both experimental and theo-
retical, have been devoted to the mechanism of this generation.
Interestingly, it appears that this mechanism depends on the
duration of the initial pulse. For pulses in the femtosecond range
(100–200 fs), the supercontinuum is initially generated through
the formation of a Raman soliton, followed by the emission
of blue-shifted nonsolitonic components (soliton fission) [192],
[193]. For pulses in the picosecond range (10–100 ps), SCG
results from SRS for the generation of the longer wavelengths,
followed by FWM for the generation of the shorter ones [194].
However, it is important to stress that the shape and width of
the generated spectrum are also very sensitive to the initial
pulse energy [195]. This may explain why there still appears to
be some controversy concerning the exact spectral-broadening
mechanism at work in specific cases, solitonic or parametric.

Recent time-resolved studies of SCG should provide additional
information and help resolve this controversy [196], [197].

Because some of the processes involved in SCG require
phase matching, it is also sensitive to the dispersion charac-
teristics of the fiber. Accordingly, in PCFs that are designed
to have two ZDWs with a very low dispersion between them,
SCG is found to be independent of the details of the input
pulse over a wide range of input pulse parameters [198]. One
can also design the fiber specially, so that it is phase-matched
in a certain wavelength range. When applied to the case of
SCG, the dispersion of the fiber can be engineered so as to
enhance the transfer of energy from the monochromatic pump
beam preferentially to a particular wavelength range [199].
In another report, nondegenerate FWM and 13-dB parametric
gain was reported in a 6.1-m long fiber with a pump power
of only 6 W [200]. SCG has also been studied in birefringent
PCFs and a mechanism proposed [201], which agrees with the
mechanisms described earlier. Numerical calculations predict
that the pulse-to-pulse polarization state of SCG may fluctuate
because of vector (or polarization) MI [202]. MI sidebands
at 3.9 THz have also been observed in a birefringent PCF
with an eccentricity of 7% [93]. The number one advantage of
PCFs is the design flexibility they offer. This is well illustrated
in numerical calculations for a triangular PCF that predict a
significantly improved Raman-gain performance [203].

Finally, although most of the PCFs fabricated and studied to
date have been made of silica, PCFs have also been fabricated
and studied with other glasses. A multimode PC tellurite fiber
with a minimum loss of 2.3 dB/m has recently been reported
to exhibit strong SRS [204]. A highly nonlinear Bi2O3-based
glass holey fiber has also been measured to have a nonlinear
coefficient γ of 460 W−1km−1 at 1550 nm [205]. A multimode
tellurite PCF has been fabricated with Aeff = 21 µm2, exhibit-
ing a loss of 2.3 dB/m, but still strong SRS with subnanosecond
pulses [206].

While there remain serious practical issues to be addressed
before PCFs can find their way into optical communication
networks, a number of applications have already been demon-
strated [207], [208]. For instance, an FWM-based 10-Gb/s
tunable wavelength converter has been fabricated in a 15-m
long PCF with a γ of 70 W−1km−1 and an SBS threshold of
21 dBm. A retiming and reamplification (2R) regenerative all-
optical switch has been reported, based on 3.3 m of a PCF with
Aeff ≈ 2.8 µm2 [209]. A 36-channel 10-GHz pulse source has
been realized in a normally dispersive holey fiber by slicing a
supercontinuum spectrum through an arrayed-waveguide grat-
ing [210]. Raman amplification has been achieved in a 75-m
section of the same fiber, with a gain of 42 dB and a noise
figure of 6 dB, and ultrafast Raman-induced signal modulation
with an 11-dB signal extinction ratio. At lower pump powers,
it is also possible to generate a simple Raman continuum of
wavelengths, which can serve as a broadband source. Such a
source has been demonstrated to be 324-nm wide and with a
spectral power density greater than 10 mW/nm [211].

The other type of microstructured fiber is the hollow core
fiber or PBGF, in which light is guided through a bandgap
mechanism. Although these fibers are not intrinsically nonlin-
ear, they can be loaded with gases that can themselves exhibit
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nonlinear effects. SRS has thus been reported in a hydrogen-
loaded PBGF [212] and self-induced transparency has been pre-
dicted theoretically in a hollow-core fiber containing resonant
two-level atoms [213].

IV. CONCLUSION

Optical nonlinearities in fibers give rise to a wealth of
new effects. This is primarily due to the fact that, because
these nonlinearities operate in a distributed manner, the effects
they produce vary widely with the chromatic dispersion and
birefringence characteristics of the fiber and, by consequence,
with the wavelength, chirp, and polarization of the propagating
lightwaves. In addition, several nonlinearities may act simulta-
neously, as in the examples of self-phase modulation (SPM) and
cross-phase modulation (XPM), XPM and four-wave mixing
(FWM), or stimulated Raman scattering (SRS) and FWM,
resulting in an even greater variety of manifestations; super-
continuum generation (SCG) and soliton formation are two
typical examples of combined nonlinearities. Nonlinear effects
can be detrimental for optical communications, especially in
wavelength-division multiplexing (WDM) systems, where they
can result in backscattering [stimulated Brillouin scattering
(SBS)], noise (spontaneous Raman), pulse distortion (SPM,
XPM, MI), and crosstalk between channels (XPM, FWM).
Conversely, they are extremely useful for a variety of applica-
tions, from fiber lasers and amplifiers to wavelength converters,
demultiplexers, optical switches, etc. Nonlinear effects will
be particularly important in the next generation of optical
networks, which will rely on all-optical functions for higher
speed and greater capacity. All-optical functions should allow
the partial elimination of optical-electronic-optical (O-E-O)
conversion in optical networks, making them more transparent
and more easily reconfigurable. The main challenge in all-
optical networks will be controlling these nonlinearities and, in
particular, their interplay. This will certainly require new types
of fibers. For example, new glass compositions may provide
intrinsically flatter SRS gain over a wider range of wavelengths,
and new fiber designs, dispersion maps, and birefringence
characteristics that can be precisely tuned to properly balance
the desired nonlinearities. In this regard, photonic crystal fibers
(PCFs) hold great promise.
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